

ÉPREUVE SPÉCIFIQUE - FILIÈRE MP

MATHÉMATIQUES 1

Lundi 4 mai : 8 h - 12 h

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

RAPPEL DES CONSIGNES

- Utiliser uniquement un stylo noir ou bleu foncé non effaçable pour la rédaction de votre composition ; d'autres couleurs, excepté le vert, peuvent être utilisées, mais exclusivement pour les schémas et la mise en évidence des résultats.
- Ne pas utiliser de correcteur.
- Écrire le mot FIN à la fin de votre composition.

Les calculatrices sont interdites

Le sujet est composé d'un problème qui comprend quatre parties indépendantes.

Objectifs

L'objectif de la **partie I** est de montrer l'existence d'un développement ternaire propre pour certains nombres réels.

La **partie II** propose l'étude d'une série de fonctions où les coefficients du développement ternaire sont remplacés par une fonction continue.

La partie III étudie des développements ternaires aléatoires.

La **partie IV** définit et présente quelques propriétés de la fonction de Cantor-Lebesgue.

Notations

On note T l'ensemble des suites réelles $t=(t_n)_{n\in\mathbb{N}^*}$ à valeurs dans $\{0;1;2\}$:

$$\forall n \in \mathbb{N}^*, t_n \in \{0; 1; 2\}.$$

On désigne par ℓ^{∞} l'ensemble des suites réelles $u=(u_n)_{n\in\mathbb{N}^*}$ bornées et on pose $\|u\|=\sup_{n\in\mathbb{N}^*}|u_n|$.

On note |y| la partie entière d'un réel y.

PARTIE I - Développement ternaire

Étude de l'application σ

- **Q1.** Démontrer que ℓ^{∞} est un espace vectoriel réel et que l'application $u \mapsto ||u||$ est une norme sur ℓ^{∞} .
- **Q2.** Pour $u = (u_n)_{n \in \mathbb{N}^*} \in \ell^{\infty}$, démontrer que la série de terme général $\frac{u_n}{3^n}$ est convergente. On note alors :

$$\sigma(u) = \sum_{n=1}^{+\infty} \frac{u_n}{3^n}.$$

- **Q3.** Démontrer que l'application σ est une forme linéaire continue sur ℓ^{∞} .
- **Q4.** Démontrer que si $t = (t_n)_{n \in \mathbb{N}^*} \in T$, alors le réel $\sigma(t)$ est dans l'intervalle [0,1].
- **Q5.** On note $\tau = (\tau_n)_{n \in \mathbb{N}^*}$ et $\tau' = (\tau'_n)_{n \in \mathbb{N}^*}$ les éléments de T définis par :

$$\tau_1 = 1 \text{ et } \forall n \in \mathbb{N}^* \setminus \{1\}, \ \tau_n = 0$$

$$\tau'_1 = 0 \text{ et } \forall n \in \mathbb{N}^* \setminus \{1\}, \ \tau_n = 2.$$

Calculer $\sigma(\tau)$ et $\sigma(\tau')$. L'application σ est-elle injective sur T?

Développement ternaire propre

On fixe $x \in [0,1[$. On définit une suite $t(x) = (t_n(x))_{n \in \mathbb{N}^*}$ par :

$$\forall n \in \mathbb{N}^*, \quad t_n(x) = \lfloor 3^n x \rfloor - 3\lfloor 3^{n-1} x \rfloor.$$

Q6. Démontrer que $t(x) \in T$.

Q7. On définit deux suites réelles $(x_n)_{n \in \mathbb{N}^*}$ et $(y_n)_{n \in \mathbb{N}^*}$ par :

$$\forall n \in \mathbb{N}^*, \qquad x_n = \frac{\lfloor 3^n x \rfloor}{3^n} \quad \text{et} \quad y_n = x_n + \frac{1}{3^n}.$$

Démontrer que les suites (x_n) et (y_n) sont adjacentes de limite x. En déduire que :

$$x = \sum_{n=1}^{+\infty} \frac{t_n(x)}{3^n}.$$

Que peut-on en conclure concernant l'application $\begin{cases} T \to [0,1] \\ u \mapsto \sigma(u) \end{cases}$?

La suite $t(x) = (t_n(x))_{n \in \mathbb{N}^*}$ est appelée développement ternaire propre de x.

Q8. Informatique pour tous. Écrire en langage Python une fonction flotVersTern(n,x) d'arguments un entier naturel n et un flottant x et qui renvoie sous forme d'une liste les n premiers chiffres $t_1(x), ..., t_n(x)$ définis dans la question précédente du développement ternaire de x.

Par exemple flotVersTern(4,0.5) renvoie [1,1,1,1].

Q9. Informatique pour tous. Si $\ell = [\ell_1, ..., \ell_n]$ est une suite finie d'entiers de $\{0; 1; 2\}$, on la complète avec des 0 pour en faire un élément de T encore noté ℓ .

Ecrire en langage Python une fonction ternVersFlot(ℓ) d'arguments une liste d'entiers ℓ . Cette fonction renvoie en sortie le flottant $\sigma(\ell)$.

Par exemple ternVersFlot([1,1,1,1]) renvoie 0.493827.....

Q10. Informatique pour tous. Si $\ell = [\ell_1, ..., \ell_n]$ est une suite finie d'entiers de $\{0; 1; 2\}$, on lui ajoute un élément égal à -1 si la somme $\ell_1 + \cdots + \ell_n$ est paire et un élément égal à -2 sinon. Ce dernier élément permet alors d'essayer de détecter d'éventuelles erreurs de transmission. Écrire en langage Python une fonction ajout (ℓ) qui ajoute à la liste ℓ un élément comme expliqué précédemment et qui renvoie la nouvelle liste.

Écrire en langage Python une fonction $\text{verif}(\ell)$ qui renvoie True si la valeur du dernier élément de ℓ est correcte et False sinon.

Par exemple ajout([1,0,2,1,0]) renvoie [1,0,2,1,0,-1] et verif([1,0,2,1,0,-2]) renvoie False.

PARTIE II - Étude d'une fonction définie par une série

Dans cette partie, on définit une fonction φ à l'aide d'un développement en série analogue au développement ternaire propre d'un réel, mais où la suite $(t_n)_{n\in\mathbb{N}^*}$ est remplacée par une fonction numérique à valeurs dans l'intervalle [0,2].

Pour tout réel x on pose :

$$\varphi(x) = \sum_{n=1}^{+\infty} \frac{1 + \sin(nx)}{3^n}.$$

Étude de l'application φ

- **Q11.** Démontrer que φ est définie et de classe C^1 sur \mathbb{R} .
- **Q12.** Pour tout x réel, justifier l'écriture :

$$\varphi(x) = \frac{1}{2} + \operatorname{Im}\left(\sum_{n=1}^{+\infty} \frac{e^{inx}}{3^n}\right)$$

et en déduire une expression simple de $\varphi(x)$ en fonction de $\sin(x)$ et $\cos(x)$.

- Q13. Pour $x \in \mathbb{R}$, en déduire une expression simple de $\sum_{n=1}^{+\infty} \frac{n\cos(nx)}{3^n}$ en fonction de $\cos(x)$.
- **Q14.** À l'aide de $\int_0^{\pi} \varphi(x) dx$ démontrer que :

$$\int_0^{\pi} \frac{\sin(x)}{10 - 6\cos(x)} \, \mathrm{d}x = \sum_{n=1}^{+\infty} \frac{1}{n3^{n+1}} ((-1)^{n-1} + 1)$$

puis en calculant la somme de la série du second membre, en déduire la valeur de l'intégrale :

$$\int_0^\pi \frac{\sin(x)}{10 - 6\cos(x)} \, \mathrm{d}x \, .$$

Q15. Retrouver cette valeur par un calcul direct.

PARTIE III - Développements ternaires aléatoires

Dans cette partie, $(T_{n,N})_{n\geq 1,N\geq 2}$ est une suite de variables aléatoires discrètes réelles, mutuellement indépendantes, définies sur un même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ et vérifiant :

$$\forall n \ge 1, \forall N \ge 2, T_{n,N}(\Omega) = \{0; 1; 2\}$$

avec
$$\mathbb{P}(T_{n,N}=0) = \mathbb{P}(T_{n,N}=1) = \frac{1}{N}$$
 et $\mathbb{P}(T_{n,N}=2) = 1 - \frac{2}{N}$.

Soit $N \ge 2$ fixé. On pose :

$$X_N = \sum_{n=1}^N \frac{T_{n,N}}{3^n}.$$

On admet que X_N est une variable aléatoire discrète réelle définie sur $(\Omega, \mathcal{A}, \mathbb{P})$.

- **Q16.** Démontrer que X_N admet une espérance et une variance. Donner leur valeur en fonction de N.
- **Q17.** Justifier que, pour tout $\varepsilon > 0$:

$$\lim_{N\to+\infty} \mathbb{P}(|X_N - \mathbb{E}(X_N)| \ge \varepsilon) = 0$$

Q18. Soit $\varepsilon > 0$, démontrer que :

$$\mathbb{P}(|X_N - 1| \ge \varepsilon) \le \mathbb{P}\left(|X_N - \mathbb{E}(X_N)| \ge \frac{\varepsilon}{2}\right) + \mathbb{P}\left(|\mathbb{E}(X_N) - 1| \ge \frac{\varepsilon}{2}\right).$$

En déduire que, pour tout $\varepsilon > 0$:

$$\lim_{N\to+\infty}\mathbb{P}(|X_N-1|\geq\varepsilon)=0.$$

PARTIE IV - Fonction de Cantor-Lebesgue

Dans cette partie, on va définir et étudier la fonction de Cantor-Lebesgue.

Étude d'une suite de fonctions

On note f_0 la fonction définie sur [0,1] par $f_0(x)=x$. Pour tout entier $n \in \mathbb{N}$, on pose :

$$\forall x \in [0,1], \quad f_{n+1}(x) = \begin{cases} \frac{f_n(3x)}{2} & \text{si } x \in \left[0, \frac{1}{3}\right] \\ \frac{1}{2} & \text{si } x \in \left[\frac{1}{3}, \frac{2}{3}\right] \\ \frac{1}{2} + \frac{f_n(3x - 2)}{2} & \text{si } x \in \left[\frac{2}{3}, 1\right] \end{cases}$$

- **Q19.** Représenter l'allure graphique des fonctions f_0 , f_1 et f_2 sur trois schémas différents (pour f_2 on envisagera sept sous-intervalles de [0,1]). Pour tout $n \in \mathbb{N}$, démontrer que f_n est à valeurs dans [0,1].
- **Q20.** Informatique. Écrire en langage Python une fonction récursive cantor(n,x) qui renvoie la valeur de $f_n(x)$.
- **Q21.** Pour tout entier $n \in \mathbb{N}$, démontrer que :

$$\forall x \in [0,1], \quad |f_{n+1}(x) - f_n(x)| \le \frac{1}{3 \times 2^{n+1}}.$$

Q22. En déduire que la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur [0,1].

La limite de la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ est notée f. On l'appelle fonction de Cantor-Lebesgue.

Q23. Démontrer que la fonction f est à valeurs dans [0,1] et qu'elle est croissante et continue sur [0,1]. Démontrer aussi qu'elle est surjective de [0,1] vers [0,1].

La fonction f est aussi nommée « escalier du diable ». Les développements ternaires étudiés en début de problème permettent d'obtenir une expression analytique de f(x).