E3A - MP 2025 - MATHÉMATIQUES

Durée: 4h

Exercice 1

Soit f la fonction définie sur \mathbb{R}^4 muni de son produit scalaire canonique, par :

$$\forall X = (x, y, z, t) \in \mathbb{R}^4, \quad f(X) = x^2 + y^2 + z^2 + t^2$$

On cherche les extrema éventuels de la fonction f sous la contrainte : $H = \{X = (x, y, z, t) \in \mathbb{R}^4, x + y = 2\}$ et les points où ces extrema sont atteints.

Première méthode

- **1.** Déterminer les extrema de la fonction $h:(u,v,w)\in\mathbb{R}^3\mapsto 2u^2+v^2+w^2-4u+4$.
- 2. Déterminer les solutions du problème posé.

Deuxième méthode

Soit $g: X = (x, y, z, t) \in \mathbb{R}^4 \mapsto x + y - 2$.

- 3. En utilisant la fonction g, déterminer les extrema possibles de f restreinte à H.
- 4. Retrouver les solutions du problème posé.

Troisième méthode

Soit $F = \{X = (x, y, z, t) \in \mathbb{R}^4, x + y = 0\}$ et $Y = (-1, -1, 0, 0) \in \mathbb{R}^4$.

- **5.** Démontrer que F est un sous-espace vectoriel de \mathbb{R}^4 et en donner la dimension.
- **6.** Déterminer le sous-espace orthogonal du sous-espace F.
- 7. Calculer la distance d(Y, F) entre Y et le sous-espace vectoriel F.
- **8.** Soit $X \in \mathbb{R}^4$. Justifier que : $X \in H \iff X + Y \in F$.
- **9.** En déduire la structure de l'ensemble H.
- 10. Retrouver de nouveau les solutions du problème posé.

Exercice 2

Soit *n* un entier naturel supérieur ou égal à 3.

On note $E_{n-1} = \mathbb{C}_{n-1}[X]$ le \mathbb{C} -espace vectoriel de dimension n, des polynômes de degré inférieur ou égal à n-1 et à coefficients dans \mathbb{C} .

On note $\mathcal{B} = (Q_0, Q_1, \dots, Q_{n-1})$ où, pour tout $k \in [0, n-1]$, $Q_k(X) = X^k$, la base canonique de E_{n-1} . Pour tout $\alpha \in \mathbb{C}$, on note φ_{α} l'endomorphisme de E_{n-1} qui à tout polynôme P, associe :

$$\varphi_{\alpha}(P) = \frac{1}{\sqrt{n}} \sum_{q=0}^{n-1} P(\alpha^{q}) X^{q}$$

Soit A_{α} la matrice de l'endomorphisme φ_{α} dans la base canonique \mathcal{B} de E_{n-1} . Soit $\omega = \mathrm{e}^{\frac{2\pi i}{n}}$. On rappelle que $\omega^n = 1$ et que $\bar{\omega} = \omega^{-1} = \frac{1}{\omega}$.

1. Déterminer, suivant la valeur de l'entier relatif m, la somme : $\sigma_m = \sum_{r=1}^n \omega^{m(r-1)}$.

On note $A_{\omega} = (a_{k,\ell})_{1 \le k,\ell \le n}$ la matrice associée à l'endomorphisme φ_{ω} dans la base \mathcal{B} de E_{n-1} .

- **2.** Écrire la matrice A_{ω} dans le cas où n=3. On utilisera le nombre complexe $j=e^{\frac{2\pi i}{3}}$.
- **3.** Démontrer que, pour tout couple $(k, \ell) \in [1, n]^2$, on a : $a_{k,\ell} = \frac{1}{\sqrt{n}} \omega^{(k-1)(\ell-1)}$.
- **4.** La matrice A_{ω} est-elle symétrique? Peut-on affirmer qu'elle est diagonalisable?
- **5.** Calculer $A_{\omega} \times A_{\overline{\omega}}$. En déduire que A_{ω} est inversible et déterminer son inverse.
- **6.** Déterminer alors un nombre complexe α tel que : $\varphi_{\omega}^{-1} = \varphi_{\alpha}$.
- 7. Calculer $(A_{\omega})^2$ puis vérifier que $(A_{\omega})^4 = I_n$.
- **8.** La matrice A_{ω} est-elle diagonalisable?

Éléments propres de φ_{ω}

On note, pour $q \in [0, n-1]$, $L_q(X) = \frac{X^n - 1}{X - \omega^q}$. En particulier, $L_0(X) = 1 + X + \cdots + X^{n-1}$.

- **9.** Déterminer les valeurs propres possibles de φ_{ω} .
- 10. Exprimer les n racines du polynôme $X^n 1$ à l'aide de puissances de ω .
- **11.** En déduire que : $\forall q \in [0, n-1], L_q \in E_{n-1}$.

On pose $H_0 = \text{Vect}(Q_0, L_0)$ et on admet que (Q_0, L_0) en est une base.

- **12.** Vérifier que H_0 est stable par φ_{ω} .
- 13. Écrire la matrice de l'endomorphisme induit par φ_{ω} sur H_0 dans la base (Q_0, L_0) .
- 14. En déduire :
 - un vecteur non nul de Ker $(\varphi_{\omega} \mathrm{Id}_{E_{n-1}})$,
 - un vecteur non nul de Ker $(\varphi_{\omega} + \mathrm{Id}_{E_{n-1}})$.
- **15.** Dans le cas n = 3, déterminer le spectre de A_{ω} .

16. Dans le cas n = 4, déterminer les valeurs propres de A_{ω} .

17. Déterminer les valeurs propres de la matrice
$$\begin{bmatrix} 0 & 0 & \frac{\sqrt{n}}{\omega} & 0 \\ 0 & 0 & 0 & \frac{\sqrt{n}}{\omega^{n-1}} \\ 0 & \frac{\omega}{\sqrt{n}} & 0 & 0 \\ \frac{\omega^{n-1}}{\sqrt{n}} & 0 & 0 & 0 \end{bmatrix}.$$

On suppose à présent $n \ge 5$.

- **18.** Montrer que le sous-espace vectoriel $G = \text{Vect}(Q_1, Q_{n-1}, L_1, L_{n-1})$ est de dimension 4 et est stable par φ_{ω} .
- 19. Déterminer le spectre de φ_{ω} .

Exercice 3

Question de cours

1. Rappeler le développement en série entière de la fonction exponentielle et son domaine de validité.

On pose, lorsque cela est possible, $f(x) = \sum_{n=0}^{+\infty} \frac{x^n}{(n!)^2}$.

- **2.** Montrer que la fonction f est définie sur \mathbb{R} .
- **3.** Justifier que f est de classe C^{∞} sur \mathbb{R} .
- **4.** Démontrer que la fonction f est lipschitzienne sur tout segment [a,b] de \mathbb{R} .
- **5.** Prouver que pour tout réel positif x, $f'(x) \le e^x$.
- **6.** Soient x et y deux réels positifs. On note $z = \max(x, y)$. Prouver que l'on a : $|f(x) f(y)| \le e^z |x y|$.
- 7. Prouver que l'on a : $f(x) 1 \sim_{x \to 0} x$.

On pose, pour tout x > 0, $g(x) = \int_1^x \frac{1}{t[f(t)]^2} dt$.

- **8.** Justifier que g est de classe C^{∞} sur $]0, +\infty[$.
- **9.** Étudier le signe de g sur $]0, +\infty[$.
- **10.** Montrer que : $g(x) \sim \lim_{x \to 0} \ln(x)$.
- 11. Prouver que pour tout t > 0, on a : f(t) > 1 + t.
- 12. En déduire que g possède une limite finie lorsque x tend vers $+\infty$.
- 13. Décomposer en éléments simples la fraction rationnelle $F(X) = \frac{1}{X(1+X)^2}$.
- **14.** Démontrer que pour tout x > 1, on a :

$$g(x) \le \ln\left(\frac{x}{x+1}\right) + \frac{1}{x+1} + \ln(2) - \frac{1}{2}$$

15. En déduire que g est majorée par $\ln(2)$ sur $]0, +\infty[$.

*** Fin du sujet ***